

Class Test - II Session- Jan - June, 2022 Month-June

Sem-IT 6th | Subject-Compiler Design | Code- C033612(033)

Time Allowed: 2 hrs | Max Marks: 40

	•	
	Caronono are companion y.	

.00	7.	6	5.	4	ب	2.			ХÒ	Note
Differentiate between Static, Stack, and Heap allocation.	Generate 3AC for the following segment of code: while (A <c and="" b="">0) do if A=1 then C =C+1 else while A<=0 do A=A+3</c>	If the SDD carried out the Input string W=x x x y z z then the output is Production Semantic Rules $S \rightarrow x \times W$ { print("2");} $S \rightarrow y$ { print("2");} $W \rightarrow S z$ { print("3");}	write SSD for the grammar: E-E+T/T T-T*F/F F-id (E) And construct annotated parse tree for the expression (4*7+1)*2. Show bottom-up evaluation also.	Given grammar A-> CC; C-> aC b Construct set of Canonical LR (1) parsing table.	- 0	Construct LL (1) Parser Table for the following grammar S-> iCtS iCtSeS a; C-> b	Find FIRST and FOLLOW functions for the following grammar by Removing Left Recursion if exists. E-> E+T/T; T-> T * E/F; F-> (E)/id	Section - I	Questions	Note: - All Questions are compulsory.
4	[5]	S	[6]	[5]	[5]	[5]	[5]		Marks	
Remember	Apply	Apply	Apply	Apply	Apply	Apply	Apply		Levels of Bloom's taxonomy	
C04	CO3	8	03	C02	C02	C02	CO2		COs	

SSEALL Shri Shankaracharya Institute of Professional Management & Technology Department of Information Technology

Sem-IT 6th | Subject- Compiler Design | Code- C033612(033)
Time Allowed: 2 hrs | Max Marks: 40 Class Test - II Session- Jan - June, 2022 Month-June

,00	7.	.6	5.		4.	ω	2.	-		Z.O	Note
Differentiate between Static, Stack, and Heap allocation.	Generate 3AC for the following segment of code: while (A <c and="" b="">0) do if A=1 then C=C+1 else while A<=0 do A=A+3</c>	If the SDD carried out the Input string $W=x \times x \times z z$ then the output is Production Semantic Rules $S \rightarrow x \times W$ { print("1");} $S \rightarrow y$ { print("2");} $W \rightarrow S z$ { print("3");}	write SSD for the grammar: E-E+T/T T-T*F/F F-id (E) And construct annotated parse tree for the expression (4*7+1)*2. Show bottom-up evaluation also.	Section - II	Given grammar A-> CC; C-> aC b Construct set of Canonical LR (1) parsing table.	Obtain LR (0) item sets and draw a parse table for the following grammar S ->SS a \varepsilon also Indicate the conflict (if any) in SLR(1) Table.	Construct LL (1) Parser Table for the following grammar S-> iCtS iCtSeS a; C-> b. Is grammar LL (1)?	Find FIRST and FOLLOW functions for the following grammar by Removing Left Recursion if exists. E-> E+T /T; T-> T * E /F; F-> (E) / id	Section - I	Questions	Note: - All Questions are compulsory.
Ξ	[5]	<u>ত</u>	[6]		[5]	[5]	[5]	[5]		Marks	
Remember	Apply	Apply	Apply		Apply	Apply	Apply	Apply		Levels of Bloom's taxonomy	
C04	CO3	S	CO3		C02	C02	C02	C02		COs	

Class Test – II Session-Jan-June, 2022 Month-June Semester- IT 6th Subject-: Data mining Code-: C033635(033)

Time Allowed: 2 hrs Max Marks: 40

Note: -Answer any 5 questions.

Q.N.	Questions	Marks	Levels of Bloom's Taxonomy	COs
1.	Explain Naive Bayes Classification method with example.	[8]	Understand	CO3
2.	Explain Logistic Regression with example.	[8]	Understand	CO3
3.	What is Classification and Prediction? Compare both the methods.	[8]	Understand	CO3
4.	Explain Cluster analysis in detail.	[8]	Understand	CO4
5.	Differentiate supervised, Unsupervised and Reinforcement learning methods.	[8]	Understand	CO4

Class Test - II Session- Jan - Jun 2022 Month- June

Sem- IT 6th, Subject- Computer Graphics and Data Visualization, Code- C033611(033)

Time Allowed: 2 hrs Max Marks: 40

Note: - Solve any five questions. All question carries equal marks.

Q.N.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Enlighten different projection techniques.	[8]	Understanding	CO1
2.	a. What is control graph and convex hull?b. Alaborate 3D transformtion.	[4] [4]	Understanding	CO2, CO3
3.	Elaborate Cohen Sutherland line clipping.		Applying	CO2
4.	Draw a Bezier curve of order 3, with 4 control points A (1,1), B (2,3), C (4,3) & D (6,4).		Applying	CO3
5.	A triangle defines by vertices A (0,0), B (1,1), C (5,2). Perform the rotate 45° about the point (-1, -1) and find the final position.	[8]	Applying	CO2
6.	Deliberate following visible suface detection methods: a. Depth-buffer method b. Back-face detection	[4] [4]	Understanding	CO3

Shri Shankaracharya Institute of Professional Management & Technology Department of Information Technology

Class Test – II Session- Jan – Jun 2022 Month- June

Sem-IT 6th, Subject- Computer Graphics and Data Visualization, Code- C033611(033)

Time Allowed: 2 hrs Max Marks: 40

Note: - Solve any five questions. All question carries equal marks.

Q.N.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Enlighten different projection techniques.	[8]	Understanding	CO1
2.	c. What is control graph and convex hull?d. Alaborate 3D transformtion.	[4] [4]	Understanding	CO2, CO3
3.	Elaborate Cohen Sutherland line clipping.	[8]	Applying	CO2
4.	Draw a Bezier curve of order 3, with 4 control points A (1,1), B (2,3), C (4,3) & D (6,4).	[8]	Applying	CO3
5.	A triangle defines by vertices A (0,0), B (1,1), C (5,2). Perform the rotate 45° about the point (-1, -1) and find the final position.	[8]	Applying	CO2
6.	Deliberate following visible suface detection methods: c. Depth-buffer method d. Back-face detection	[4] [4]	Understanding	CO3

Class Test -II Session- Jan-June, 2022 Month- JUNE

Sem- IT 6th Subject- Management Information System Code- C000648(033)

Time Allowed: 2 hrs Max Marks: 40

Note: Question 1 to 5 is compulsory, Carry 2 marks each.

Attempt any 5 from question 6 to 11. All carry 6 marks.

Q.N.	Questions		Levels of Bloom's taxonomy	COs
	Unit I			
1	What are the general models of systems?	[2]	Understanding	CO1
2.	What are the basic system concepts applied to MIS?	[2]	Understanding	CO2
3.	Define System concept.	[2]	Understanding	CO1
4.	Why AI systems are needed in MIS?	[2]	Understanding	CO3
5.	Write the Applications of Expert systems.	[2]	Applying	CO2
				<u> </u>
6.	What are the DSS objectives? Draw and explain a DSS model.	[6]	Understanding	CO4
7.	What is the need of DSS in MIS?	[6]	Applying	CO1
8.	Write Strategic planning for information resources.	[6]	Understanding	CO3
9.	Write human resource information system with suitable example.	, [6]	Understanding	CO1
10	What is the model for mastering information system?	[6]	Applying	CO1
11	What is the need of knowledge based expert system in MIS?	[6]	Understanding	CO1

SSIPMT RAIPUR

Shri Shankaracharya Institute of Professional Management & Technology <u>Department of Information Technology</u>

Class Test – II Session- Jan. – June 2021 Month- June

Sem- IT 6th Subject- Information Theory and Coding C033613 (033)

Time Allowed: 2 hrs Max Marks: 40

lote: - Attempt any 5 question. All questions carry equal marks.

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
110,	The Parity Check matrix of (7,4) linear code is as follows:			
				602
1.	$H= \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$	[8]	Understand	CO3
••	$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$	n [
	Calculate the syndrome vector for single bit errors.			
	The generator matrix for (6,3) block codes is given below. Find all code vectors of this			
	code.			
	(1 0 0 0 1 1			
	$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$	[8]	Apply	CO3
	G =			
	For a (6,3) linear block code the coefficient matrix [p] is as follows:			
	(0 1 1)			
	$\mathbf{p} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$			
	P = 1 0 1	[8]	Understand	CO3
3.				
	The received code words at the receiver are			
	i) 0001110 ii) 111011			
	Check whether they are correct or contain errors.			
	For a systematic linear block code, the three parity check digits, C ₄ , C ₅ , C ₆ are given			
	by $C_4 = d_1 + d_2 + d_3$			
	$C_5 = d_1 + d_2 + d_3$			602
1	$C_1 = d_1 + d_2$	[8]	Apply	CO3
4.	 i) Construct generator matrix ii) Construct code generated by this matrix 			
•	· • • • • • • • • • • • • • • • • • • •			
	iii) Determine error correcting capacity iv) Prepare suitable decoding table			
	Tropale summer	1	To see the second secon	
5.	For a (7,4) cyclic code, find out the generator matrix if $G(D)=1+D+D3$	[8]	Apply	CO4
	Construct a systematic (7,4) cyclic code using generator polynomial $G(D) = x3+x2+$	1		
		[8]	Apply	CO4
6.	for the message i) 1010 ii) 1000	լսյ		
	1) 1010 11) 1000		ė en	